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Abstract—Remote sensing imagery captured purely in the
optical spectrum may have environmental disturbances such as
clouds. In order to get a full understanding of a scene, it is
important to capture multi-spectral imaging data so that we
get complementary information about a particular scene. This
however poses another challenge which is the matching and
registration of multi-spectral images taken of the same scene. In
this paper, we present a multi-modal image matching framework
that performs image matching on optical and microwave remote
sensing images of the same scene. Our framework uses an image-
to-image translation network that generates a microwave image
from an optical image and then uses the generated microwave
image for matching. This approach results in improved match-
ing accuracy. A common issue with deep-learning-based image
matching approaches is the need for labelled image datasets. We
overcome this hurdle by training our framework on unlabelled
remote sensing image data which is of abundance. We also employ
a method involving angles and z-scores to identify and discard
potential false matches.

Index Terms—Image Matching, Image Registration, Multi-
spectral Imaging, Convolutional Neural Networks, Generative
Adversarial Networks, Remote Sensing.

I. INTRODUCTION

REMOTE sensing is the process of detecting and monitor-
ing the physical characteristics of an area by measuring

the reflected and emitted radiation at a distance (typically from
a satellite or an aircraft). Special cameras collect remotely
sensed images, which help researchers ”sense” things about
the Earth.

Several technological advances in this area have taken place
over the past few decades such as sensor system improve-
ments, cost-effective computing systems, efficient algorithms
for interpreting Geo-spatial data, and so on.

Consequently, due to increased efficiency, reliability, and
robustness of data obtained from remote sensing, the appli-
cations have grown tremendously, including but not limited
to large-scale ride-sharing services, high-resolution maps for
autonomous driving, the monitoring and modelling of changes
over time for precision farming, and urban planning [1].

The advancements in remote sensing technologies have
brought with it an abundance of data. To make use of this
vast remote sensing data, there is a need to develop advanced
and efficient algorithms. However, the amount of information
made available using only optical imaging may be limited
due to several environmental disturbances. Hence, collecting
complementary information from multi-modal imaging data
gives a better understanding of an image scene or a specific
object. Images of the same scene contain a complement of
information. An optical image may contain information that a
microwave image lacks and vice versa. As a result, data fusion
has become a key topic within the field of remote sensing [1].

To make the most out of multi-modal image data we must
have Geo-referenced and precisely co-registered multi-spectral
images. So far, data fusion has largely been constrained to
applications across similar modalities mainly because we need
to be able to determine corresponding points, and perform
alignment of data sources before data fusion. For image-
based data, these correspondences are obtained through image
matching, whereby common points are co-located across a set
of images.

Our work aims to provide a solution to data fusion between
optical and microwave images. In this paper, we present a
deep learning-based framework for image matching between
optical and microwave images. In this work, we propose a
multi-modal image matching method that employs a GAN to
generate microwave imagery corresponding to the input optical
image, which we then feed into an image matching network.
We also propose a method based on angles and z-scores that
operates on the matches generated by the matching network
to identify and eliminate potential false matches.

We train our GAN using a paired and unlabelled image
dataset and as a part of the image matching network, we use
a CNN that has been pre-trained for image classification tasks
as the base of our matching network. This approach to training
enables us to avoid a common drawback of deep learning-
based approaches to image matching which require labelled
image datasets.

In this paper, we first discuss previous approaches to image
matching and image registration and point out some shortcom-
ings in these approaches. We then discuss the methodology
used in our work.

II. RELATED WORK ON IMAGE MATCHING

A. SIFT

Scale-invariant feature transform, abbreviated as SIFT, is
used for extracting invariant features from an image. It does
so by transforming image data into scale-invariant coordinates
with respect to local features [3].

This algorithm accepts an image as input and outputs a
multi-dimensional feature vector consisting of feature descrip-
tors. SIFT features are invariant to image scale and rotation
and are prominent across various affine distortions, 3D view-
point changes, noise, and alterations in illumination.

As shown in recent studies, the performance of SIFT for
cross-spectral remote sensing is affected quite significantly
by intensity differences among spectral images. Various ap-
proaches such as using scale-restricted SIFT [4], modifying
the SIFT descriptor [5], and so on have attempted to tackle this
problem. SIFT also uses hand-crafted feature descriptors and
is largely constrained to specific scene geometry and sensor



resolutions and is computationally expensive. By using Deep
Learning approaches to perform image matching, we bypass
the need for expensive computation and get better and more
accurate results.

B. Deep Learning Methods

In recent times, Convolutional Neural Networks have been
used to improve image matching techniques.

Since there is a non-linear relationship between correspond-
ing pixels in cross-spectral images, SIFT and other related
algorithms such as SURF [6], AKAZE [7], etc. which tradi-
tionally have been used for comparing image patches in mono-
spectral settings are limited in their matching performance. As
stated in [8], pixel intensity variations in the Long Wavelength
IR spectrum pertain to variation in the objects’ temperature,
whereas pixel intensity variations in the visible spectrum cause
colour and texture variations. Moreover, their computational
complexity is another cause of concern when testing on larger
datasets.

[8] used a CNN for comparing the similarity of cross-
spectral images using image patches. They evaluate different
deep network architectures to measure similarity. They eval-
uated the 2-channel network, the Siamese network, and the
Pseudo-Siamese network. They built a cross-spectral image
patch dataset using the public Visible-Near IR scene dataset
[9]. The patches were extracted around interest points detected
using SIFT in the visible spectrum images.

Results from their experiment showed that the 2ch network
performed significantly better than the Siamese and pseudo-
Siamese networks in terms of accuracy, but was also slower.
They attributed the performance of the 2ch network to the
fact that the information is jointly processed right from the
first layer. They were able to use the network trained on a
VIS-NIR cross-spectral dataset in a VIS-LWIR dataset, which
is significant as data available in the LWIR spectrum is very
limited.

Another approach taken in [10] explains the use of feature
matching. They implement a deep CNN structure to process
the image patch which represents the image feature point
and obtain the feature point description of the image. SIFT
detectors are used to achieve feature point detection, but a deep
CNN is used for feature descriptors instead. Image matching
was done using the KNN algorithm. The KD tree is established
using feature descriptors. Finally, RANSAC [11] is used to
reject abnormal data. The UBC dataset [12] is used to train the
model and the W1BS dataset [13] is used to test it. SIFT and
SURF were compared with their method and were found to
be inferior in terms of sensitivity to geometry and appearance.

In the approach taken in [14], a GAN is used for training
data augmentation. They train a deep matching network that
is capable of taking as input an optical image patch and a
SAR image patch and determining if the two given image
patches match. In order to find matching points between a
SAR and an optical image, they extract SIFT key points and
use these points as centers to obtain the SAR and optical
image patches. They use the trained deep matching network

to find candidate matching points among the points identified
by SIFT. Finally, false matches are eliminated by the use of
correlation constraints and geometric constraints.

A drawback of the approach taken in [14] is that SIFT key
points are used as a basis for finding matches between images.
As mentioned before, SIFT uses hand-crafted feature descrip-
tors and is largely constrained to specific scene geometry and
sensor resolutions [1]. SIFT based methods also have the issue
of generating insufficient feature points. These issues limit the
application of SIFT in image registration.

Overall, a drawback of image matching using deep learning
methods is the scarcity of labelled microwave and optical
remote sensing image datasets.

C. Our Contribution

To overcome the previously mentioned drawbacks, in this
work, we use a modified network based on the network in
[2]. In [2], the authors use a pre-trained VGG-16 architecture
which is well established to be strong in finding features [15].
We, however, use the EfficientNet [16] for this purpose as it
gives more accurate matches between optical and microwave
images. Using a model that has been pre-trained on image clas-
sification tasks enables us to avoid the previously mentioned
drawbacks of SIFT based approaches to image matching and
registration and avoid the need for training datasets.

For image matching and we also employ a method involving
angles of line segments of matches to determine false matches
as well as a microwave image generating network (see Fig. 1.).
We train a GAN and use the generator as the microwave image
generator. Since the GAN can be trained on unlabelled mi-
crowave and optical images, we do not require labelled remote
sensing images, thereby overcoming the common drawback of
needing labelled image datasets.

III. OUR METHOD

A. The Objective

The objective of our work was to create a deep learning-
based framework capable of taking as input two images of the
same scene, with one of the images in the optical spectrum
and the other in the microwave spectrum and as output give a
list of pairs of image coordinates where the image matching
algorithm identified matching features between the 2 images.

More precisely, the algorithm gives as output a list of
pairs of coordinates. Say, for example, that one of the pairs
in the list is [M : (120, 121), O : (500, 512)]. This means
that the algorithm detected a feature in the neighbourhood
of coordinate (120, 121) in the microwave image and that its
corresponding feature in the optical image was detected in the
neighbourhood of coordinate (500, 512).

Having a list of such matches gives us matching features
and key points between the optical and microwave images that
can be used for co-registration of the images.

B. The Framework

We propose a deep learning approach that is capable of
taking two images (optical and microwave images) and is



Fig. 1. Pipeline of our proposed algorithm. Image (a) is the input optical image. Image (b) is the input microwave image of the same scene. Image (c) is an
intermediate image that is generated by the Microwave Image generator.

capable of giving as output a list of image coordinates where
matching features were identified.

This approach makes combined use of an image-to-image
translation network (referred to as the microwave image gen-
erator) and a CNN-based matching network. The image-to-
image translation network, given an optical image as input, is
capable of generating its corresponding microwave image.

1) Microwave Image Generator: The first step is to take the
input optical image and use it to generate its corresponding
microwave image. For this purpose, we train a GAN using a
paired, unlabelled image dataset [17].

2) CNN Matching Network: We take the generated mi-
crowave image and compare it to the input microwave image
to get the matching feature points between the true microwave
image and the generated microwave image. This step is done
with the help of a CNN-based matching framework based on
the one presented in [2].

Since the generated microwave image and the input op-
tical image have their corresponding features in the same
coordinates, by finding the matching points between the
generated and the true optical image, we effectively get the
matching points between the original optical and original
microwave images given as input. (The microwave generator
network does not alter locations of any features in the optical
image given as input). The entire framework is summarized
in Fig. 1.

As previously mentioned, we have used the Sentinel-2
images from the SEN12MS dataset [17] as the unlabelled
dataset to train the GAN. We discuss how this dataset was
used in more detail in the following section.

IV. DATASET CREATION

We use Sentinel-2 images from the SEN12MS dataset [17]
as the unlabelled dataset to train the GAN. Shown in Table I
are the spectral bands contained in an image taken by Sentinel-
2 [18].

The images captured by Sentinel-2 have 13 spectral bands.
We extract band 4 and use it as the microwave image. By
extracting out bands 3,4 and 8 and concatenating them, we
have the corresponding 3 channel optical image.

TABLE I
THE 13 BANDS OF A SENTINEL-2 IMAGE

Sentinel-2 Bands Central
Wavelength
(µm)

Resolution
(m)

Band 1 - Coastal aerosol 0.443 60
Band 2 - Blue 0.490 10
Band 3 - Green 0.560 10
Band 4 - Red 0.665 10
Band 5 - Vegetation Red Edge 0.705 20
Band 6 - Vegetation Red Edge 0.740 20
Band 7 - Vegetation Red Edge 0.783 20
Band 8 - NIR 0.842 10
Band 8A - Vegetation Red Edge 0.865 20
Band 9 - Water Vapor 0.945 60
Band 10 - SWIR - Cirrus 1.375 60
Band 11 - SWIR 1.610 20
Band 12 - SWIR 2.190 20

TABLE II
ENCODER ARCHITECTURE

No. Layer Type Parameters Input
Size

Output
Size

1 Convolutional
Layer

Kernel Size = 2x2
No. of kernels = y
Stride Length=2

[2n,2n,x] [n,n,y]

2 Batch
Normalization
Layer

- [n,n,y] [n,n,y]

3 ReLU activation
Layer

- [n,n,y] [n,n,y]

The images extracted from the SEN12MS dataset are 16-bit
images. This means that the pixel value can vary from 0 to
216, with 0 corresponding to the lowest possible intensity and
216 corresponding to the highest possible intensity. In order
for the image data to work well during the training of the
deep learning algorithms, we normalize these intensity values
between [0, 1].

We also convert the 3-band RGB optical image to its single-
band gray-scale equivalent. By doing this, we reduce the
amount of data that we have to handle.



TABLE III
DECODER ARCHITECTURE

No. Layer Type Parameters Input
Size

Output
Size

1 Deconvolutional
Layer

Kernel Size = 2x2
No. of kernels = y
Stride Length = 2

[n,n,x] [2n,2n,y]

2 Batch
Normalization
Layer

- [2n,2n,y] [2n,2n,y]

3 ReLU activation
Layer

- [2n,2n,y] [2n,2n,y]

TABLE IV
RESNET BLOCK ARCHITECTURE

No. Layer Type Parameters
1 Convolutional Layer Kernel Size = 3x3

No. of kernels = 256
Stride Length = 1

2 Batch Normalization Layer -
3 ReLU activation Layer -
4 Convolutional Layer Kernel Size = 3x3

No. of kernels = 256
Stride Length = 1

5 Batch Normalization Layer -
6 Concatenation -

V. DETAILS OF THE FRAMEWORK

A. The GAN

The GAN that we use learns a mapping from observed op-
tical image o and random noise vector z to the corresponding
microwave image m. That is, G : {o, z} → m. We train
the generator G to produce output microwave images that
resemble the real microwave images. An adversarially trained
discriminator D is trained to identify copies created by the
generator.

1) The Generator Model: The generator model G is com-
posed of 4 encoders, 3 resnet blocks and 4 decoders. Each
encoder has the architecture shown in Table II.

When an image is given as input to the generator, it first
goes through the four encoders and undergoes changes in
dimensions as shown in Table V. The input optical image given
to the first encoder is first resized to a 256 by 256 image if
required. The [16, 16, 256] tensor generated by the 4 encoders
is then given as input to the 3 resnet blocks. The output of the
third resnet block is then given to the first decoder, Decoder1.
The output of Decoder4 (with dimensions [256, 256, 1]) is the
generated microwave image.

Below is the loss function of the generator.

−Eo,z[log(D(o,G(o, z))+ε)]+λEo,m,z[‖m−G(o, z)‖1] (1)

Where we use an L1 distance loss and λ is set to 100. The
training process of the GAN aims to minimize this loss.

2) The Discriminator Model: The discriminator of the
GAN takes 2 images as input – an optical and a microwave
image and it gives as output the probability that the microwave
image is real.

The discriminator, given two images, each of dimensions
[256, 256, 1], concatenates them to form a [256, 256, 2] tensor

TABLE V
GENERATOR ARCHITECTURE

No. Architectural Unit Input Size Output Size
1 Encoder1 [256,256,1] [128,128,32]
2 Encoder2 [128,128,32] [64,64,64]
3 Encoder3 [64,64,64] [32,32,128]
4 Encoder4 [32,32,128] [16,16,256]
5 Resnet1 [16,16,256 [16,16,256]
6 Resnet2 [16,16,256 [16,16,256]
7 Resnet3 [16,16,256 [16,16,256]
8 Decoder1 [16,16,256] [32,32,128]
9 Decoder2 [32,32,128] [64,64,64]
10 Decoder3 [64,64,64] [128,128,32]
11 Decoder4 [128,128,32] [256,256,1]

Fig. 2. The discriminator model of the GAN

which we give as input to the network shown in Fig. 2. The
[2, 2, 256] tensor which we get as output is first flattened
into a fully connected layer. This is followed by two more
fully connected layers of size 512 and 128 with Leaky ReLU
activations, followed by the final output layer which is of size
one and has a Sigmoid activation function to ensure that we
get a value between 0 and 1 which represents the required
probability.

Below is the objective of the discriminator.

Eo,m[log(D(o,m)+ε)]+Eo,z[log(1−D(o,G(o, z))+ε)] (2)

The training process of the GAN attempts to maximize this
objective, while the adversary, the generator attempts to min-
imize its loss function.

B. The CNN-based matching framework

After the microwave image generation, we use a CNN based
network to find feature points and perform image matching
between the generated and true microwave images. In order
to do this, we perform multiple convolutions on the images
and form feature descriptors of the two input images.

The approach we take to generate our feature descriptor is
based on the approach taken in [2]. However, rather than using
a pre-trained VGG-16 [15] network, we construct the feature
descriptors of the image using the outputs of certain layers of
a pre-trained EfficientNet b0 network [16]. EfficientNets are
accurate and computationally efficient models which achieved
top-1 accuracy on the Imagenet dataset and managed to
achieve state-of-the-art accuracy on CIFAR-100.



We make this change as EfficientNet b0 often gives us more
accurate matches. The pre-trained network that we use was
trained on the Imagenet dataset [19]. The pre-trained network
is highly capable when it comes to finding strong candidate
feature points of an image.

To generate the feature descriptors of an image we use the
outputs of the following layers of EfficientNet b0:

• block3b activation.
• block4b activation.
• block6a activation.

The outputs of these layers have the dimensions
(28, 28, 240), (14, 14, 480) and (7, 7, 672) respectively.
The framework given in [2] includes a feature pre-matching
step which involves finding Euclidean distances between the
3 feature descriptors and summing them up. To account for
the differences in the output dimensions of the first 2 output
layers compared to the third, we include the multipliers of√

(672/240) and
√
(672/480) to the respective Euclidean

distances of the block3b activation and block4b activation
output feature descriptors. That is, we modify equation 4 of
[2] as follows.

d(x, y) =

√
672

240
d1(x, y) +

√
672

480
d2(x, y) + d3(x, y) (3)

After the CNN generates the feature descriptors for the two
input images, we compare them to find matches. In order to
compare two features, we use the framework given in [2].

C. Identifying false matches using a method of comparison of
neighbouring angles

Once The CNN has performed the initial matching between
the input microwave image and the generated microwave
image, we attempt to identify and eliminate potential false
matches using a method of finding angles and z-scores.

As seen in Fig. 3, we draw line segments between the
matched points of the two images to denote the matched
features in the images. To identify whether a feature point
in the reference image (which has been matched to another
feature point in the secondary image) has been matched
falsely or not, we consider the k-nearest neighbouring feature
points of the point in consideration within the reference image
(Fig. 4) and we calculate the angles of the lines formed by
these k points and their corresponding matching points in the
secondary image (Fig. 5). We then normalize these k angles
to a normal distribution with µ = 0 and σ = 1 using equation
4.

Z =
X − µ
σ

(4)

Finally, we perform the angle calculation for the point in
consideration. If the angle of the point in consideration is not
within the range of µ± (1.5)σ, then we consider the point to
be falsely matched.

This method of eliminating potential angles is summarized
in algorithm 1. In algorithm 1, n is the number of matched
points found between the two images and X[i] and Y [i]
contain the coordinates of points in the true microwave image

Fig. 3. Matching performed by the CNN based matching network

Fig. 4. Feature point in consideration (blue) and its k nearest neighbours
(green).

and generated microwave image that were given as input.
indices is an array of shape (n, k) where indices[i] contains
the k nearest neighbouring feature points from point i.

In lines 7 and 9 of algorithm 1, the angles are calculated
using the formula,

tan inverse

(
X[p][0]− Y [p][0]

(X[p][1])− (Y [p][1] +W )

)
(5)

where W is the width of microwave image given as input and
X[i][0] is the y of point X[i] and X[i][1] is the x coordinate
of X[i].

Fig. 5. Angle of the point in consideration (blue) and the angles of its k
nearest neighbours (green).



Algorithm 1: Identification of false matches using
comparison method involving k-nearest neighbouring
angles.
input : An array X and Y of each of shape (n, 2) and

k
1 Initialize indices, angles, angle, ids and

false points;
2 Use a k nearest neighbours algorithm to assign the

indices (with respect to array X) of the k nearest
neighbours of feature point X[i] to indices[i];

3 for i← 0 to n do
4 ids← indices[i];
5 for j ← 0 to k do
6 p← ids[j];
7 angles[j] = angle of the line segment between

X[p] and Y [p];
8 end
9 angle← angle of the line segment between X[i]

and Y [i];
10 mean← Mean of the array angles;
11 std← Standard deviation of the array angles;
12 if | (angle−mean)

(std) | ≥ 1.5 then
13 Points X[i] and Y [i] are falsely matched;
14 Append i to false points;
15 end
16 end

output: Array false points

Fig. 6. Potential false matches identified through the angle method (yellow).

An example of the results of this false matching identifica-
tion is shown in Fig. 6 with k = 14. The matches that have
been identified to be false through this method are shown with
yellow lines. As can be seen, this method is rather effective
in detecting false matches.

VI. EXPERIMENTS

In this section, we test our framework on unseen optical
and microwave image pairs generated from the SEN12
dataset [17] and compare its performance with other image
matching algorithms. We measure the performance using
a precision metric. The precision metric is given in equation 6.

TABLE VI
PRECISION EXPERIMENT RESULTS

Algorithm Mean Min. Max. Std Dev.
Feature
matching
using SIFT

76.36% 49.40% 91.10% 11.41

Feature
matching
using ORB

86.69% 71.16% 95.74% 5.99

Our
proposed
framework

94.08% 91.36% 96.55% 1.35

AM

TM
(6)

That is, we find the percentage of accurate matches among the
total number of matches.

We perform image matching on a set of optical and
microwave image pairs using the following 3 algorithms.

1) Feature matching using SIFT.
2) Feature matching using ORB [20].
3) Feature matching using The framework proposed in

this paper.

We pass unseen optical and microwave image pairs which
are extracted from the dataset [17] as explained earlier in
section IV. We alter the optical images by rotation. Table VI
shows the performance of the three algorithms on the test
image pairs.

As can be seen from Table VI. Our proposed framework
performs significantly better than the SIFT and the ORB
algorithms on remote sensing images of the sentinel-2 image
dataset [17]. Our network shows a significant increase in
accuracy when it comes to finding matches and shows less
variability in precision as well across the image pairs used in
the experiment.

The reason why we compare the real microwave and gen-
erated microwave images instead of directly comparing the
real microwave and optical images is to increase the number
of matches and accuracy of the matches yielded by the CNN
network.

In Fig. 7, we show the result of image-to-image translation
performed by our microwave image generator network. The
microwave image generator network removes features that are
prominent in the optical image, (such as the river in this
example) and generates features that would potentially be
present in the corresponding microwave image of the same
scene.

In Fig. 8, we show the results of the image matching
performed by our framework and ORB. From this figure, it
is clear that our framework performs significantly better than
ORB at image matching.



Fig. 7. Result of passing a gray-scale optical image through the microwave image generating network. Image (a) is the input optical image, image (b) is the
microwave image generated by the GAN and image (c) is the ground truth microwave image corresponding to optical image (a).

Fig. 8. Comparison between the matching performed by our framework (column (a)) and ORB (column (b)). The red lines indicate matching features in the
two images. The yellow line segments indicate the false matches identified by the method of computing neighbouring angles as explained before.



VII. CONCLUSION

In this paper, we propose a deep learning framework capable
of taking an input optical image and a microwave image and
accurately finding matching features between the two images.
We proposed a GAN which performed image-to-image trans-
lation by taking the input optical image and generating its
corresponding microwave image. We then propose a CNN-
based matching network, based on [2] which is capable of
taking the generated and input microwave images and finding
matching points/features between them. We also propose a
method based on comparing slopes to weed out potential false
matches, thereby making the matching more accurate.

By using an image-to-image translation network to generate
a microwave image that corresponds to the input optical
image and performing image matching using the generated
image rather than the input optical image, we improve on the
accuracy of the matches. The method of comparing slopes
helps us in eliminating any false matches that may have crept
in during the image matching phase. It is also worth reiterating
that this framework only requires unlabelled remote sensing
image datasets for training, which is of abundance.
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